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Abstract. Results are presented from a numerical study of lattice QCD with gauge group SU(2) and two
flavors of Wilson fermion at non-zero quark chemical potential p > T. Studies of the equation of state,
the superfluid condensate, and the Polyakov line all suggest that in addition to the low-density phase of
Bose-condensed diquark baryons, there is a deconfined phase at higher quark density in which quarks form
a degenerate system, whose Fermi surface is only mildly disrupted by Cooper pair condensation.

PACS. 11.15.Ha Lattice gauge theory — 21.65.+f Nuclear matter

1 Introduction

The phase structure of QCD at large baryon density is one
of the most fascinating areas of strong-interaction physics,
and yet a systematic calculational approach to this prob-
lem remains elusive. Lattice QCD simulation, the usual
non-perturbative approach of choice, fails dismally be-
cause in Euclidean metric the quark action gM (u)gq, where
M = D[A]+ pyo +m with p the quark chemical potential,
results in a complex-valued path integral measure det M
when p # 0. Since g > 0 promotes baryon current flow
in the positive t-direction, the fundamental reason for this
Sign Problem can be traced to the explicit breaking of time
reversal symmetry. Because the measure no longer has an
interpretation as a probability distribution, Monte Carlo
importance sampling, the mainstay of lattice simulations,
is completely ineffective in the thermodynamic limit.

It is instructive to ask what goes wrong when sim-
ulations are performed with a measure det MM which
is positive definite by construction, as is the case for all
practical fermion algorithms. It turns out that while M
describes a color-triplet quark ¢ € 3, M describes a con-
jugate quark q¢ € 3. The model’s spectrum thus contains
gauge-singlet ¢q¢ states, indistinguishable from mesons
at g4 = 0, but carrying non-zero baryon number. As p
rises, baryonic matter first appears in the ground state
(i.e. ng > 0) at an onset p, ~ img,, i.e. with an en-
ergy per quark comparable with the lightest baryon in
the spectrum, which is degenerate with the pion, rather
than the physically expected u, ~ %mnucleon. Only calcu-

lations performed with the correct measure det™ M have
cancellations among configurations, due to the fluctuating
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phase of the determinant, which ensure that n, vanishes
for %mﬁ <p< %mnucleon.

For Two-Color QCD (QCsD), i.e. for the gauge group
SU(2), this bug is actually a feature. Since ¢ and ¢ live in
equivalent representations of the color group, hadron mul-
tiplets contain both ¢g mesons and gq baryons. It is corre-
spondingly straightforward to show that the quark deter-
minant is positive definite for even Ny [1]. QCsD is thus
the simplest model of dense strongly interacting matter
amenable to study with orthodox lattice techniques. Ad-
ditionally, if there is a separation of scales m, < m, in the
spectrum, then at low densities attention may be focussed
on the Goldstone bosons of the system (both mesons and
baryons) using chiral perturbation theory (xPT) [2]. The
key result is that for g > p, = 3m,, a non-vanishing
quark density n, > 0 develops, along with a superfluid
diquark condensate (¢q) # 0. Just above onset, the sys-
tem is thus a textbook Bose Einstein Condensate (BEC)
formed from tightly bound scalar diquarks.

Using the xPT prediction for ng,(p) [2], it is simple
to develop the full equation of state, i.e. pressure p and
energy density &4, at T = 0 [3]:
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Fig. 1. Model equation of state for f2 = N,/6x>.

Here, f: is a parameter of the model. Contrast this with
another paradigm for cold dense matter, namely a degen-
erate system of weakly-interacting massless quarks popu-
lating a Fermi sphere up to some maximum momentum
kF IS

_ NyN. 5
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Superfluidity in this scenario arises from the condensation
of quark Cooper pairs within a layer of thickness A centred
on the Fermi surface, so that {qq) oc Au>.

Figure 1 plots ng, p and g, from (1), each divided by
the free field results (2), as functions of p. On equat-
ing pressures, this naive model, which ignores all non-
Goldstone and gluonic degrees of freedom, predicts a first-
order deconfining transition from BEC to “quark matter”
at pq = 2.3y, with the choice f2 = N,/672.

2 Simulation

To test whether this prediction holds in a more system-
atic calculation we have performed simulations of SU(2)
lattice gauge theory with Ny = 2 Wilson fermions with
u # 0 [3]. The Wilson formulation is not obviously a
stupid choice: Wilson fermions retain a conserved baryon
charge; any problems with chiral symmetry should dom-
inate in the low-k region of the quark dispersion curve,
which lies at the bottom of the Fermi sea and is hence
inert; moreover, studies with free fermions show that sat-
uration artifacts due to the complete filling of the first
Brillouin zone actually set in at higher values of y than is
the case for staggered fermions [4]. Most importantly, the
eigenvalue spectrum of the Wilson-Dirac operator has the
same symmetries as that of continuum QC,D. As shown
in [3], this fact permits an exact ergodic hybrid Monte
Carlo algorithm for Ny = 2, with no requirement to take
a fourth root, which may be problematic for u # 0 [5].
The only novelty of our simulation is the inclusion of a
diquark source term
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in the dynamics, where subscripts label flavor and the
Pauli matrix acts on color. As well as making the algo-
rithm ergodic, setting 7 # 0 mitigates the effect of IR fluc-
tuations due to Goldstone modes in any superfluid phase,
and of course enables direct estimation of the (ggq) con-
densate.

Our initial study has been performed on an 8 x 16
lattice using a standard Wilson gauge action, with param-
eters f = 1.7, Kk = 0.178, and j = 0.04 (with a few points
taken at j = 0.02, 0.06). Studies of the static quark poten-
tial and the hadron spectrum at u = 0 yield a = 0.220 fm,
myra = 0.79(1), and m,/m, = 0.80(1)'. We thus expect
the onset of baryonic matter at p,a ~ 0.4. Thermody-
namic observables are calculated as follows: quark density
is given by a local operator via

olnZ
o (4)

nq:

As a component of a conserved current, it is immune from
quantum corrections, but may be affected by artifacts due
toa > 0,V < oc. We therefore prefer to quote our results
in terms of n,/nd%, where n'2%(u) is evaluated for free
massless quarks on the same lattice. The pressure follows

from an integral formula
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Note that although p is calculated purely in terms of quark
observables, it is in principle the pressure of the system
as a whole, although both continuum and thermodynamic
limits must eventually be taken. Finally, quark energy den-
sity is also estimated by a local operator
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this requires both subtraction of the 4 = 0 vacuum con-
tribution, and a p-independent but as yet unknown mul-
tiplicative renormalisation. In what follows, therefore, the
shape of the curve is in principle correct, but the overall
scale still undetermined.
Figure 2 summarises our results. Both n, and p start
to rise from zero at pa =~ 0.3, although a careful j — 0
extrapolation will be needed to pinpoint the onset with
any precision. By pa = 0.5 both quantities scale with
p in general accordance with free-field predictions, but
with approximately twice the expected value. One expla-
nation of this mismatch is that the system has formed a

1
Fermi sphere with y = Er < kp o ng, which could be
attributed to a negative binding contribution to E from
interactions. The quark energy density, by contrast, in-
creases more slowly than free-field expectations up to pa =
0.65, whereupon free-field scaling sets in rather abruptly.
Another intriguing result [3] is that for 0.4 < pa < 1.0
the gluon energy density ¢, (identically zero in free-field
theory) scales to quite high precision as p*, the only phys-
ically sensible possibility once p/T > 1. Note that e, > 0

! This corrects the value erroneously given in [3].
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Fig. 2. Lattice equation of state for 7 = 0.04 (open symbols
give j — 0 extrapolation).
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Fig. 3. Order parameters {(¢q) and L vs. p.

entirely as a result of interactions with the background
quark density, since this is the only means by which pu-
dependence can arise.

To elucidate what is happening, fig. 3 plots both the
superfluid order parameter (gq) divided by p?, and the
Polyakov line L. For pa > 0.5 it is clear that the system
is in a superfluid phase, but what is remarkable is that at
pa = 0.6 there is a sudden transition to a regime where
{qq) x p2, as expected for BCS pairing at a Fermi surface.
At roughly the same point L rises from zero; although for
theories with fundamental matter L is not strictly an or-
der parameter, this is suggestive that at pua =~ 0.65 there
is a deconfining transition, beyond which the effective de-
grees of freedom are best thought of as quarks (or even
quasiquarks) and not the scalar diquarks of yPT.

3 Discussion

Our initial study of thermodynamic quantities, and of
the properties of the ground state, strongly suggests that
QC>D at low temperature has at least two transitions
as the chemical potential p is raised. The first is be-
tween the vacuum and a phase of Bose-condensed tightly
bound diquarks; the second, a relativistic analogue of the
BEC/BCS crossover currently discussed in both strongly
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Fig. 4. Energy per quark ¢4/nq vs. p.

correlated electron and cold atom systems, is a deconfin-
ing transition to a system of degenerate quarks, the Fermi
surface being mildly disrupted by a Cooper pair conden-
sate. Although QCsD clearly models nuclear matter unre-
alistically, its description of quark matter may well prove
to have much in common with that of QCD. We are cur-
rently extending our study to the hadron spectrum, and
to finer lattice spacings to check that this conclusion is not
due to lattice artifacts. Interesting results obtained from a
study of the gluon propagator on the current system will
be discussed elsewhere [6,3].

Meanwhile it is hard to resist the temptation to spec-
ulate on what a two-color star might look like. Figure 4
plots the energy per quark ¢,/n, vs. p using the data
of fig. 2. The most striking feature of this plot is the pro-
nounced minimum at pa =~ 0.8, which is both robust (since
it occurs even if corrections for a > 0, V' < oo are left out),
and unexpected (since it does not occur for the model EoS
of fig. 1). We infer that any large object assembled from a
fixed number of QC2D quarks, such as a star, will have the
bulk of its interior in the neighbourhood of this minimum,
which as fig. 3 shows, means that the object would in effect
be a quark star formed from deconfined matter. Somewhat
speculatively, we have labelled the different regions of the
p-axis with the corresponding layers of the star, although
a quantitative solution for the radial profile must await
correctly normalised calculations of the energy densities
eq and g,.
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